Normal

The normal (or Gaussian) distribution is frequently used as a model of demand. It is characterized by two parameters, its mean μ and its variance σ^2 .

The basic definitions and properties are

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

$$E[X] = \mu$$

$$Var(X) = \sigma^2$$

$$\psi(s) = e^{\mu s + \frac{\sigma^2 s}{2}}.$$

The normal has the property that if X and Y are two independent normal random variables, then the sum X + Y also has a normal distribution (it is "closed under addition"). For example, if X and Y are independent with means μ_X, μ_Y and variances σ_X^2, σ_Y^2 (respectively), then their sum X + Y has a normal distribution with mean $\mu_X + \mu_Y$ and variance $\sigma_X^2 + \sigma_Y^2$.

Gumbel

The Gumbel (or double-exponential) distribution is frequently used in discrete-choice models because it is "closed under maximization." That is, the maximum of two Gumbel random variables is also a Gumbel random variable. It is characterized by two parameters, a scale parameter μ and location parameter η .

The basic definitions and properties are

$$\begin{split} f(x) &= \frac{1}{\mu} e^{-\frac{x-\eta}{\mu}} e^{-e^{-\frac{x-\eta}{\mu}}} - \infty < x < \infty \\ E[X] &= \eta + \frac{1}{\gamma\mu} \\ Var(X) &= \frac{\mu^2 \pi^2}{6} \\ \psi(s) &= e^{\eta s/\mu} \Gamma(1+s\mu), \end{split}$$

where $\gamma \approx = 0.577$ is Euler's constant and $\Gamma(x)$ is the extension of the factorial function to real numbers

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

If X_1 and X_2 are two independent Gumbel random variables with parameters (η_1, μ) and (η_2, μ) respectively, then $\max\{X_1, X_2\}$ is a Gumbel random variable with parameters $(\mu(\ln(e^{\eta_1/\mu} + e^{\eta_2/\mu}), \mu))$.

Stochastic Monotonicity and Convexity

Consider a random variable X that depends on some parameter θ , so that $X = X(\theta)$. That is, $X(\theta)$ is a *random function* of θ . For example, X could be the number